📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%.
Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time.
Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.
In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us